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Abstract. We use the constituent quark model (CQM) to describe CDF data on double parton cross
section and HERA data on the J/Ψ ratio cross section of elastic and inelastic diffractive productions. Our
estimate shows that the radius of the constituent quark turns out to be rather small, R2

quark ≈ 0.1GeV−2,
in accordance with the assumption on which CQM is based.

1 Introduction

One of the most challenging problems of QCD is to find
correct degrees of freedom for high energy “soft” interac-
tion. In other words, the question is what set of quantum
numbers diagonalizes the interaction matrix at high en-
ergies. On the one hand, the observation of the diffrac-
tion production in all “soft” processes including the pho-
toproduction [1] is a direct experimental indication that
hadrons are not correct degrees of freedom. On the other
hand, at short distances we know that color dipoles are the
correct degrees of freedom [2] (see also [3]). Frankly speak-
ing, these two facts exhaust our solid theoretical knowl-
edge on the subject.
In this paper we are going to examine an old model

for the degrees of freedom at high energy: the constituent
quark model [4], in which the constituent quarks play the
rôle of the correct degrees of freedom. In spite of the naiv-
ity of this model it works and describes a lot of “soft” data
in the first approximation [5].
Different theoretical arguments have also been ex-

pressed in favor of the existence of two sizes in hadrons,
e.g. in instanton models of the QCD vacuum [6], and it
has been included as an essential ingredient in the non-
perturbative QCD approach for the high energy scatter-
ing [7]. The CQM gives a constructive way to build an
approach which introduces two dimensional scales inside
a hadron: the size of the hadron, consisting of the con-
stituent quarks, and the size of the constituent quark it-
self.
We wish to re-examine this model because of two beau-

tiful pieces of experimental data.
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Fig. 1. The Mueller diagram for the double parton shower
interaction

(1) CDF double parton cross section at the Tevatron [8].
The CDF collaboration has measured the process of in-
clusive production of two pairs of “hard” jets with almost
compensating transverse momenta in each pair, and with
values of rapidity that are very similar. Such pairs can
only be produced in double parton shower interactions
(double parton collisions; see Fig. 1). The cross section of
this interaction can be calculated using Mueller diagrams
(as shown in Fig. 1) in CQM.
The double parton scattering cross section can be writ-

ten in the form [8]

σDP = m
σincl(2jets)σincl(2jets)

2σeff
, (1)

where the factor m is equal to two for different pairs of
jets and to one for identical pairs. The experimental value
of σeff = 14.5 ± 1.7 ± 2.3mb [8]. This value is about 6–7
times less than the total pp̄ cross section at the Tevatron
and this itself shows that we have a small scale inside the
proton. The idea is that this small size is related to the
proper size of the constituent quark. We are going to check
this idea in the paper.
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(2) HERA data on inclusive diffraction production with
nucleon excitation. HERA data for both inclusive (see
Fig. 2) as well as for and exclusive diffraction show that
the nucleon excitations give at least 30%–40% of the cross
section [9] in the region of small t (t < 1.5GeV2). In CQM
these two processes of the diffraction production are pre-
sented in Fig. 2. One can see that they also give informa-
tion about the size of the constituent quark.
The main goal of this paper is to extract the value

of the proper size of the quark using these two sets of
data, using the simplest assumptions on the quark–quark
interaction. We assume that
(i) only the pomeron exchange [10] contributes to the am-
plitude of the quark–quark interaction at high energies,
and
(ii) that we can calculate the inclusive cross section using
the Mueller diagrams [11] and the AGK cutting rules [12].
In Sect. 2 we discuss in more detail our approach; we

calculate the value σeff in (1) and the ratio

R(t) =

dσDIS
el (γ∗ + p → X + p)

dt
dσDIS

inel (γ
∗ + p → X +N∗)

dt

(2)

for the single pomeron exchange model. In Sect. 3 we in-
troduce the possibility of triple pomeron interactions and
re-analyze σeff and R. We present our conclusions and
suggestions for further experiments in the last section.

2 Single pomeron exchange in CQM

2.1 Quark–quark scattering in the pomeron approach

As we said, the key ingredient of the CQM is the quark–
quark (antiquark) amplitude at high energies. In the single
pomeron model this amplitude can be written in terms of
the single pomeron exchange as shown in Fig. 3.
In order to calculate the contribution of the diagrams

in Fig. 3, we have to know the main parameters of the
pomeron which we choose in the following way.
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Fig. 4a,b. The single inclusive a and double inclusive b cross
sections in the single pomeron exchange model in the CQM

(1) For the exchange of the “soft” pomeron we have

P
(
Y, q2

)
= e∆Y −α′q2Y , (3)

where Y = ln s is the rapidity of the elastic process.
(2) We found the intercept and the slope of the pomeron
trajectory by fitting the data of the total, elastic and
diffractive cross sections (we will show this later). We have

∆ = 0.08− 0.09, α′
P(0) ≈ 0.2GeV−2, αP(0) = 1 +∆.

(4)
(3) The vertices of the pomeron–quark interactions

g2P−Q = g20 ≈ 8–9GeV−2. (5)

(4) The vertex for the inclusive emission of the hadron (a
in Fig. 3) is taken from the inclusive proton–proton scat-
tering to be

a ≈ 2. (6)

(5) It is common in the two processes we are going to
discuss here that they are both due to the exchange of the
so-called “hard” pomeron (gluon “ladder” in perturbative
QCD, as shown in Figs. 1 and 2). We accept here a rather
simplified way of describing such a “hard” pomeron. We
assume the same formulae as for the “soft” one (see (3)
and (4)), but ∆H > ∆S given by (4) and α′

P(0) = 0.
We use a very simple model for the wave function of

the constituent quark inside a hadron, namely,

Ψ =
α

π
√
3
e−(α/2)(∑ x2

i ), (7)

where the constant α is connected to the electromagnetic
radius of proton R2

electr:

α = 1/R2
electr, (8)

and we take R2
electr = 15.6GeV

−2.

2.2 σeff in the CQM

Armed with the knowledge that was discussed above, we
can calculate the contributions of the single pomeron ex-
change to our processes (see Fig. 4).
In the case of the single inclusive process we have only

one diagram, of Fig. 4a; all other contributions are can-
celled due to the AGK cutting rules [12]. This diagram
gives us

f1(Y ) =
dσ
dy
= 18g20ae

∆Y ; (9)
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Fig. 5a,b. σeff (in GeV−2) ver-
sus R2

quark (in GeV−2) for α′
P =

0.25GeV−2 a and for α′
P = 0 b.

The straight line in b shows the ex-
perimental value of σeff

we have here a combinatorial factor 9 for three quarks in
each proton, and an additional factor 2. Indeed, we use
the s-channel unitarity equation in the form

2ImAel = |Ael|2 +Gin, (10)

and we see that for the one pomeron exchange, which is
related to the Gin and therefore to the cut pomeron, we
have an additional factor 2. This will be our usual pre-
scription for the cut pomeron. For the double inclusive
cross section we have contributions of several diagrams,
given in Fig. 4b.
(1) Let us demonstrate, step by step, how to perform the
calculations in this model. We have for Fig. 4b

D1(y1, y2) = 4 · 9
∫

dt
16π

e2∆Y e−|t|(4R2
quark+2α′

PY ). (11)

Here 9 is a combinatorial factor, 4 comes from the AKG
rules (2 for each cut pomeron). We introduce also the con-
stituent quark radius R2

quark in order to take into account
the t-dependence of the quark–pomeron vertex, which we
parametrize in the simplest Gaussian form: gq−P(t) =
g0 exp[R2

quarkt]. Integrating this expression over |t|, we ob-
tain

D1(y1, y2) =
9
8π

g40a
2αe2∆Y

α′
PY +R2

quark
. (12)

(2) The second diagram of Fig. 4b is somewhat more com-
plicated. First of all, we define the form factor for this
type of diagrams:∫

|Ψ (x1x2x3) |2δ (�x1 + �x2 + �x3) eiqx1−iqx2dx1dx2dx3

= e−(|t|)/(2α). (13)

This gives

D2(y1, y2) = 4 · 36
∫

dt
16π

e2∆Y e−|t|2(α′
PY +(1)/(2α)), (14)

where 36 is the combinatorial factor for this type of con-
figurations, and we obtain for this diagram

D2(y1, y2) =
9
π

g40a
2αe2∆Y

1 + 2αα′
PY

. (15)

(3) The third diagram in Fig. 4b gives

D3(y1, y2) = 4 ·36
∫

dt
16π

e2∆Y e−|t|(2α′
PY +2R2

quark+(1)/(2α)).

(16)
Here we used the same vertex, and after the integration
we get

D3(y1, y2) =
9
π

g40a
2αe2∆Y

1 + 4α
(
α′
PY +R2

quark

) . (17)

Now we are ready to use our equation (1) and to esti-
mate the possible dependence of σeff on the quark radius
R2
quark. For the σeff we can write

σeff = m
f(y1)f(y2)

2
(
D1

(
R2
quark

)
+D2

(
R2
quark

)
+D3

) . (18)

In Fig. 5 we plot the value of σeff from (1) as a function
of R2

quark for m = 1, y1 = y2 = Y/2. One can see that at
any value of the unknown size of the constituent quark the
value of σeff turns out to be larger than the experimental
value.
The conclusion we derive from this simple model is

quite obvious: in CQM the “soft” pomeron exchange for
quark–quark scattering cannot explain the CDF result of
the double parton cross section. However, the experimen-
tal value of σeff obtained from the high pt jet production
can be described by a “hard” pomeron. Indeed, in this
case we have to consider α′

P = 0, and Fig. 5b shows that
we have σeff ≈ 15mb for R2

quark ≈ 0.05GeV−2. We would
like to emphasize that the double parton shower cross sec-
tion σeff is very sensitive to the size of the constituent
quark in the CDF kinematics since the CDF measures the
jet production by “hard” pomeron for which α′

P(0) = 0.

2.3 R(t) = (dσDIS
el /dt)/(dσDIS

inel /dt) in the CQM

In the single pomeron exchange model the cross section
for DIS diffraction and elastic scattering can be described
by two diagrams in Fig. 6.
The first diagram in Fig. 6 leads to

dσD
1

dt
= 3g20e

2∆Y e−2|t|(α′
HY +R2

quark). (19)
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Fig. 6. The total inclusive diffraction cross section for a single
pomeron exchange in the CQM

0.2 0.4 0.6 0.8 1 1.2

0.5

1

1.5

2

2.5

3
R(t)

GeV

t

−2
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In this process the “hard” pomeron contributes, so
∆ = ∆H ≈ 0.3 and α′

H(0) = 0. It should also be stressed
that the contribution of this diagram to the total cross
section (integrated over t) is very sensitive to the value of
Rquark (D1 ∝ 1/R2

quark) since this contribution is propor-
tional to 1/(α′

PY +R
2
quark), and for the “hard ” pomeron

α′
P(0) = 0.
The second diagram in Fig. 6 depends only slightly on

the value of the quark radius, and can be described as
follows:

dσD
2

dt
= 6g20e

2∆Y e−|t|(1/(2α)+2(α′
HY +R2

quark)). (20)

For the elastic cross section we have

dσel2
dt

= 9g20e
2∆Y e−|t|(1/(3α)+2(α′

HY +R2
quark)). (21)

Here we used the expression for the simplest form factor
in this model:∫

|Ψ (x1, x2, x3) |2δ (�x1 + �x2 + �x3) eiqx1dx1dx2dx3

= e−(|t|)/(6α). (22)

Now we define our dσDIS
inel /dt as a difference between these

two contributions. Figure 7 shows the value of the ratio
R(t), given by (2). One can easily see that this ratio de-
pends neither on the value of Rquark, nor on the value of
the “hard” pomeron intercept ∆. Hence, it can be consid-
ered as a crucial test of our model.
Comparing two pictures, Figs. 5 and 7, we conclude

that σeff can be described using the small value of Rquark
and the “hard” pomeron approach with α′

P = 0, while R
does not depend on Rquark and α′

P = 0, and the obtained
shape of R for a given t is close to the experimental graph
in [1]. It follows from this simple exercise that we have
to check the description of high energy scattering in the
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Fig. 8. Diagrams for diffractive and elastic cross sections in
the first order
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CQM including the “triple” pomeron vertex. But before
doing this, in order to clarify the question of the possible
value of triple pomeron vertex and other parameters in
this model, we will examine our model by fitting the data
on total, elastic and diffractive dissociation cross sections.

2.4 Total, elastic and diffractive dissociation processes
in the CQM

Let us check how well our model, CQM, describes the
experimental data on total, elastic and diffractive disso-
ciation processes. In the simplest case, without the triple
pomeron vertex corrections and additional pomeron ex-
changes, we have the following contribution for the total
cross section:

σtotal (Y ) = 18g20e
∆Y . (23)

Due to our s-channel unitarity constraint we write here
again an additional factor 2 for the cut pomeron. For the
elastic cross section one can obtain

σelastic (Y ) =
81
16π

g40e
2∆Y

2α′
PY + 4R

2
quark + 2/(3α)

. (24)

We define also how to calculate the diffractive dissoci-
ation process. First of all, we take into account the sum
of diffractive and elastic processes. We have to calculate
several types of diagrams; see Fig. 8. The answer for these
diagrams is the following:

σ (Y ) =
9
32π

g40e
2∆Y

α′
PY + 2R

2
quark

+
9
4π

g40αe
2∆Y

1 + 2αα′
PY

+
9
2π

g40αe
2∆Y

1 + 4α(α′
PY +R2

quark)
. (25)

The experimental value of the diffractive dissociation
cross section, single and double together, is equal to

σdiffr (Y ) = σ (Y )− σelastic (Y ) . (26)

The result of the fitting is presented in Figs. 10–12. We
see that we have to include into our consideration the di-
agrams of the next order, with the triple pomeron vertex
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Fig. 10a,b. Total cross section of
p–p interaction in CQM without γ a
and with γ corrections b
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Fig. 11a,b. Elastic cross section of
p–p interaction in CQM without γ a
and with γ corrections b
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Fig. 12a,b. Diffractive dissociation
cross section of p–p interaction in
CQM without γ a and with γ cor-
rections b

and with the double pomeron exchange. Taking into ac-
count these corrections, which are given by diagrams of
the type of Fig. 9, we obtain better a fit; see Figs. 10–12.
We present the analytical expressions for these contri-

butions in the appendix; they are rather simple. Let us
note also that we calculated both the single and double
diffractive dissociation processes, and we plotted a graph
with single diffractive dissociation data. Hence, it is not
surprising that the obtained curve is above the experi-
mental points. So, in this model we obtained the following
parameters: for the pomeron–quark vertex and intercept
g2P−Q = 8–9GeV−2, ∆ = 0.08–0.09, and for the value of
the triple pomeron vertex γ/g0 = 0.013–0.015. Our con-
clusion is that the value of the triple pomeron vertex is
not small and the contribution of next order corrections
is important.

3 Triple pomeron interaction in CQM

In this section we are going to calculate the same pro-
cesses as in the previous section, but taking into account
the triple pomeron interaction. We would like to see how
this interaction changes the Rquark dependence of the am-
plitude, and we will try to find a reasonable value of the
quark radius to be used in the CQM based phenomenol-
ogy.

3.1 σeff in one loop calculation

The triple pomeron interaction leads to a number of new
diagrams presented in Fig. 13 which we have to add to
the diagrams of Fig. 4. It should be stressed that there are
many diagrams which, due to the AGK cancellations [12],
do not contribute to double inclusive production.
The diagrams with triple pomeron interaction in the

case of a single inclusive process are presented in Fig. 14.
These diagrams are the simplest ones with the triple
pomeron vertex, which we denote by γ, and where we
take y1 = y2 = Y/2. So, we have the following additional
contributions to the single inclusive process.
(1) The first diagram of Fig. 14 is

f2(Y ) =
9
8π
g40e

∆Y

(
γ

g0

)∫ Y/2

0

dxe∆x

R2
quark + α′

Px
. (27)

(2) The second diagram of Fig. 14 gives

f3(Y ) =
9
π
g40e

∆Y α

(
γ

g0

)∫ Y/2

0

dxe∆x

1 + 4αα′
Px
. (28)

We have more complicated contributions for the dou-
ble inclusive cross section. Indeed, these are all diagrams
of Figs. 13 and 15. The analytical expressions for these
diagrams are given in the appendix.
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Now, using (1) again, we estimate the dependence of
σeff on R2

quark in the case of one pomeron loop. We have

σeff = m
[
(f1(y1) + f2(y1) + f3(y1))

× (f1(y2) + f2(y2) + f3(y2))
]

/[
2 (D1 +D2 +D3 +D4 +D5 +D6 +D7 +D8

+ D9 +D10 +D11 +D12 +D13)
]
. (29)

We calculate the case of symmetrical pair production,
where m = 1 and y1 = y2 = Y/2, and we take a “hard”
pomeron in this calculation, α′

P = 0. We have already con-
sidered the important question of the numerical value of
the triple pomeron vertex γ. Fitting the diffraction disso-
ciation data we obtained that γ/g0 ∼ 0.014. This is not
such a small number; the one loop corrections influence
and change our results. Indeed, in Fig. 16 the value of σeff
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Fig. 18. Inelastic diffraction diagram in DIS

is plotted as a function R2
quark, where we used (29) for the

calculations.
We see that indeed, the corrections change the re-

sult, obtained in the previous calculation. However, the
change is not so crucial. For a “hard” pomeron the value
of σeff ≈ 15mb is achieved for R2

quark ≈ 0.08–0.07GeV−2.
The conclusion is that in order to explain the CDF re-
sult for the double parton cross section we need the triple
pomeron vertex, but the value of R2

quark still remains very
small.

3.2 R(t) in one loop calculation

In the case of triple pomeron interaction we have an addi-
tional number of diagrams which contribute to the elastic
cross section of DIS and to the inelastic diffraction in DIS.
First of all, consider the diagrams of DIS, presented in
Figs. 17 and 18, which describe elastic and proton diffrac-
tion processes together. The expressions corresponding to
these diagrams are also presented in the appendix.
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In these diagrams we defined by ∆S ≈ 0.08 and α′
P ≈

0.2 the intercept and the slope of the “soft” pomeron, and
by ∆ ≈ 0.3 and α′

H ≈ 0 the intercept and the slope of the
“hard” pomeron. We also introduced ∆̃ = 2∆S −∆.
The calculation of the elastic cross section in DIS for

one loop leads to

dσel2
dt

= − 9
8π
g40e

2∆Y

(
γ

g0

)∫ Y

0

dxe∆̃x

α′
Px+

1
4α

(30)

× e−|t|(2α′
HY +R2

quark−α′
Hx+(α′

Px/2)+7/(24α))

− 9
16π

g40e
2∆Y

(
γ

g0

)∫ Y

0

dxe∆̃x

α′
Px+R2

quark

× e−|t|(2α′
HY +(3R2

quark/2)−α′
Hx+(α′

Px/2)+1/(6α)).

Here dσDIS
inel /dt is considered as the difference between the

contributions of diagrams of Figs. 17 and 18 and of the
elastic cross section. Now we are ready to get the ratio
R(t), which is given by (2). The result is shown in Fig. 19a.
Actually, there is a fast exponential fall of the curve, due
the parametrization chosen for our vertices. Therefore we
present also the graph Fig. 19b, where, instead of the sim-
plest Gaussian parametrization etR

2
quark , we introduce a

more realistic form factor, Felastic(|t|) = 1/(1 + |t|/0.72)2,
for the calculation of the elastic cross section. For the cal-
culation of the diffraction dissociation cross section we also
take a different form factor, Fdiffr(|t|) = 1/(1 + |t|/2α),
which is the first term of the expansion of e−|t|/2α, which
we used before as the parametrization for the form factor
in the case of diffractive dissotiacion at the “tree” level.
We see that we here obtain a better fit.
The obtained result for the one loop calculation is, in

these simplest estimations, not so different from the “tree”
calculation, in spite of the fact that in one loop calcula-
tion the radius of the quark, R2

quark ≈ 0.08–0.1GeV−2 is
involved. It seems that in order to obtain a better fit to
these data, we have to consider corrections where more
realistic form factors will be taken into account.

4 Conclusion

In this paper we demonstrate that the new beautiful ex-
perimental data on the double parton shower effective

cross section (CDF, Tevatron) and on the ratio of elas-
tic and inelastic diffraction production in DIS (ZEUS,
HERA) can be described in the framework of the naive
constituent quark model (CQM). The value of the quark
radius turns out to be small: it is equal to R2

quark = 0.07–
0.1GeV−2. This smallness can be considered as an argu-
ment supporting the idea that constituent quarks are the
correct degrees of freedom for soft (long distance) interac-
tions. It should be stressed also that we reached a satisfac-
tory description of the experimental data by introducing
only the triple pomeron interaction. This means that the
constituent quarks do not exhaust all degrees of freedom
of soft high energy interaction. Much work is needed to
build a comprehensive theoretical approach for long dis-
tance interaction, and we consider the fact that the CQM
describes all data of soft interaction as our small contri-
bution to the solution of this complicated problem.
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Appendix

A The next order corrections

The next order corrections are the corrections where the
double pomeron exchange and triple pomeron vertex are
included. In the case of the total cross section there are
the following additional contributions:

σ1total (Y ) = − 9
32π

g40e
2∆Y

α′
PY + 2R

2
quark

− 9
4π

g40αe
2∆Y

1 + 2αα′
PY

− 9
2π

g40αe
2∆Y

1 + 4α(α′
PY +R2

quark)

− 9
8π
g40e

∆Y

(
γ

g0

)∫ Y

0

dxe∆x

R2
quark + α′

Px

− 9
π
g40e

∆Y α

(
γ

g0

)∫ Y/2

0

dxe∆x

1 + 4αα′
Px
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+
9

128π2
g60e

2∆Y

(
γ

g0

)

×
∫ Y

0

dxe∆x(
2α′Y +

7R2
quark

2
− α′

Px

2

)(
R2
quark + α′

Px
)

+
9

64π2
g60e

2∆Y

(
γ

g0

)

×
∫ Y

0

dxe∆x(
2α′Y +

7R2
quark

2
− α′

Px

2
+
1
2α

)(
R2
quark + α′

Px
)

+
9

32π2
g60e

2∆Y

(
γ

g0

)

×
∫ Y

0

dxe∆x(
4α′Y + 3R2

quark − α′
Px+

1
α

)(
R2
quark + α′

Px
)

+
9

16π2
g60e

2∆Y

(
γ

g0

)

×
∫ Y

0

dxe∆x(
4α′Y + 3R2

quark − α′
Px+

3
2α

)(
R2
quark + α′

Px
)

+
9

64π2
g60e

2∆Y

(
γ

g0

)

×
∫ Y

0

dxe∆x((
3R2

quark + 2α
′
PY
)( 1

4α
+ α′

Px

)
− α

′2
P x

2

2

)

− 9
64π2

g60e
2∆Y

(
γ

g0

)

×
∫ Y

0

dxe∆x(
2α′Y + 2R2

quark − α′
Px

2
+
3
8α

)(
1
4α
+ α′

Px

)

+
9

32π2
g60e

2∆Y

(
γ

g0

)

×
∫ Y

0

dxe∆x(
2α′

PY − α′
Px

2
+
7
8α

)(
1
4α
+ α′

Px

)

+
9

32π2
g60e

2∆Y

(
γ

g0

)
(31)

×
∫ Y

0

dxe∆x((
R2
quark + 2α

′
PY +

1
2α

)(
1
4α
+ α′

Px

)
− α

′2
P x

2

2

) .

For the elastic cross section we have in the next order

σ1elastic (Y ) = − 81
128π2

g60e
2∆Y

(
γ

g0

)

×
∫ Y

0

dxe∆x(
2α′Y +

3R2
quark

2
− α′

Px

2
+
1
6α

)(
R2
quark + α′

Px
)

− 81
64π2

g60e
2∆Y

(
γ

g0

)
(32)

×
∫ Y

0

dxe∆x(
2α′Y +R2

quark − α′
Px

2
+
13
24α

)(
1
4α
+ α′

Px

) .

For sum of elastic and diffractive dissotiation cross sec-
tions we have

σ1elastic+diffr (Y ) =
9
8π
g40e

∆Y

(
γ

g0

)∫ Y

0

dxe∆x

R2
quark + α′

Px
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)
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2
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1
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2∆Y
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)
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1
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)(
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quark + α′

Px
)

− 27
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(
γ
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)

×
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0
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3
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)(
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quark + α′
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)

− 27
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− 27
32π2

g60e
2∆Y

(
γ

g0

)

×
∫ Y

0

dxe∆x(
2α′

PY − α′
Px

2
+
7
8α

)(
1
4α
+ α′

Px

)

− 27
32π2

g60e
2∆Y

(
γ

g0

)
(33)

×
∫ Y

0

dxe∆x((
R2
quark + 2α

′
PY +

1
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)(
1
4α
+ α′

Px

)
− α

′2
P x

2

2

) .

B Diagrams which contribute to the double
inclusive cross section

(1) First diagram of Fig. 15:

D4(Y ) =
9
4π
g40e

∆Y

(
γ

g0

)∫ Y

Y/2

dxe∆x

R2
quark + α′

Px
. (34)

(2) Second diagram of Fig. 15:

D5(Y ) =
18
π
g40e

∆Y α

(
γ

g0

)∫ Y

Y/2

dxe∆x

1 + 4αα′
Px
. (35)

(3) First diagram of Fig. 13:

D6(Y ) = − 9
64π2

g60e
2∆Y

(
γ

g0

)
(36)

×
∫ Y/2

0

dxe∆x(
2α′Y +

7R2
quark

2
− α′

Px

2

)(
R2
quark + α′

Px
) .

(4) Second diagram of Fig. 13:

D7(y) = − 9
32π2

g60e
2∆Y

(
γ

g0

)∫ Y/2

0
(37)

× dxe∆x(
2α′Y +

7R2
quark

2
− α′

Px

2
+
1
2α

)(
R2
quark + α′

Px
) .

(5) Third diagram of Fig. 13:

D8(Y ) = − 9
16π2

g60e
2∆Y

(
γ

g0

)
(38)

×
∫ Y/2

0

dxe∆x(
4α′Y + 3R2

quark − α′
Px+

1
α

)(
R2
quark + α′

Px
) .

(6) Fourth diagram of Fig. 13:

D9(Y ) = − 9
8π2

g60e
2∆Y

(
γ

g0

)∫ Y/2

0
(39)

× dxe∆x(
4α′Y + 3R2

quark − α′
Px+

3
2α

)(
R2
quark + α′

Px
) .

(7) Fifth diagram of Fig. 13:

D10(Y ) = − 9
32π2

g60e
2∆Y

(
γ

g0

)
(40)

×
∫ Y/2

0

dxe∆x((
3R2

quark + 2α
′
PY
)( 1

4α
+ α′

Px

)
− α

′2
P x

2

2

) .

(8) Sixth diagram of Fig. 13:

D11(Y ) = − 9
32π2

g60e
2∆Y

(
γ

g0

)
(41)

×
∫ Y/2

0

dxe∆x(
2α′Y + 2R2

quark − α′
Px

2
+
3
8α

)(
1
4α
+ α′

Px

) .

(9) Seventh diagram of Fig. 13:

D12(Y ) = − 9
16π2

g60e
2∆Y

(
γ

g0

)
(42)

×
∫ Y/2

0

dxe∆x(
2α′

PY − α′
Px

2
+
7
8α

)(
1
4α
+ α′

Px

) .

(10) Eighth diagram of Fig. 13:

D13(Y ) = − 9
16π2

g60e
2∆Y

(
γ

g0

)∫ Y/2

0
(43)

× dxe∆x((
R2
quark + 2α

′
PY +

1
2α

)(
1
4α
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Px

)
− α
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P x

2

2

) .

C Diagrams which contribute to the total
inelastic diffraction in DIS

(1) First diagram of Fig. 17:

dσD
3

dt
= − 3

16π
g40e

2∆Y

(
γ

g0

)
(44)

×
∫ Y

0

dxe∆̃x

α′
Px+R2

quark
e−|t|(2α′

HY +(3R2
quark/2)−α′

Hx+(α′
Px/2)).

(2) From the second diagram of Fig. 17 we obtain

dσD
4

dt
= − 3

8π
g40e

2∆Y

(
γ

g0

)∫ Y

0

dxe∆̃x

α′
Px+R2

quark

× e−|t|(2α′
HY +(3R2

quark/2)−α′
Hx+(α′

Px/2)+1/(2α)). (45)

(3) Third diagram of Fig. 17:

dσD
5

dt
= − 3

8π
g40e

2∆Y

(
γ

g0

)
(46)

×
∫ Y

0

dxe∆̃x

α′
Px+

1
4α

e−|t|(2α′
HY +R2

quark−α′
Hx+(α′

Px/2)+3/(8α)).
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(4) Fourth diagram of Fig. 17:

dσD
6

dt
= − 3

8π
g40e

2∆Y

(
γ

g0

)∫ Y

0

dxe∆̃x

α′
Px+

1
4α

(47)

× e−|t|(2α′
HY +R2

quark−α′
Hx+(α′

Px/2)+1/(8α)−1/(8α+32α2α′
Px)).

(5) The last diagram of Fig. 18 leads to

dσD
7

dt
= 6g20

(
γ

g0

)
e−|t|R2

quark
1− e−(2∆−∆S)Y

2∆−∆S
. (48)
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